Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cem Cüneyt Ersanlı, ${ }^{\text {a* }}$ Yasemin Dündar, ${ }^{\text {b }}$ Uğur Sarı, ${ }^{\text {c }}$ Ningur Noyanalpan, ${ }^{\text {b }}$ Mustafa
Odabaşoğlu ${ }^{\text {d }}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, ${ }^{\text {b }}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, ${ }^{\text {c }}$ Department of Computer Technology, Faculty of Education, Kırıkkale University, Yahşian Campus, 71450 Kırıkkale, Turkey, and
${ }^{\text {d Department of Chemistry, Faculty of Arts and }}$ Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.126$
Data-to-parameter ratio $=21.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 3-(2-oxobenzothiazolin-3-yl)propanoate

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$, the bicyclic benzothiazole system is planar within $0.025 \AA$; the displacements of the carbonyl oxygen and the β-carbon atom of the methylpropionate substituent from the benzothiazole mean plane are -0.028 (2) and $0.002(2) \AA$, respectively. There is a short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact between the α atom of the methyl propionate substituent and the carbonyl oxygen of the oxobenzothiazole group [C $\cdots 3.241$ (2) Å]. These contacts link the molecules into infinite chains, running along the b axis of the crystal.

Comment

As part of our studies of benzothiazole derivatives, which represent valuable starting materials for the design of new drugs and frequently exhibit important biological properties (Varkonda et al., 1985), we have undertaken the X-ray structural study of the title compound, (I).

(I)

An ORTEPIII (Farrugia, 1997) view of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. The bicylic benzothiazole system of (I) is planar within $0.025 \AA$; the displacements of the carbonyl oxygen and the β-carbon atom of the methyl propionate substituent are -0.028 (2) and 0.002 (2) Å, respectively.

The C7-N1, C7-S1, and C1-S1 bond lengths [1.371 (2), 1.768 (2) and 1.742 (2) Å, respectively] are approximately midway between the corresponding standard values for single and double carbon-nitrogen (1.49 and $1.27 \AA$; Clayden et al., 2001) and carbon-sulfur (1.81 and $1.61 \AA$ A ; Khan et al., 1988) bonds. The $\mathrm{C} 7-\mathrm{N} 1$ bond length is in good agreement with the reported values of 1.365 (3) \AA for 3-methyl-2(3H)-benzothiazolone (Rudd \& Barany, 1984), 1.367 (2) \AA for 4-(2-carboxybenzoyl)-2(3H)-benzothiazolone (Lamiot et al., 1995), and 1.375 (3) \AA for ethyl 4-(2-oxobenzothiazolin-3-yl)butanoate (Baysen et al., 2002). The difference between the $\mathrm{C} 1-\mathrm{S} 1$ and $\mathrm{C} 7-\mathrm{S} 1$ bonds may be attributed to the different degrees of conjugation of the electron lone pair of the S1 atom with the aromatic six-membered ring and the $\mathrm{C}=\mathrm{O}$ group. The $\mathrm{C} 1-\mathrm{S} 1$ and $\mathrm{S} 1-\mathrm{C} 7$ bond lengths $[1.742$ (2) and 1.768 (2) \AA] agree well with the reported values of 1.743 (3) and 1.777 (3) \AA for 3-methyl-2(3H)-benzothiazolone (Rudd \& Barany, 1984), 1.734 (2) and 1.776 (3) \AA for 4-(2-carboxy-

Received 21 July 2003

Accepted 24 September 2003 Online 7 October 2003

Figure 1
A view of the molecule of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram of the crystal structure of the title compound, showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts as dashed lines.
benzoyl)-2(3H)-benzothiazolone (Lamiot et al., 1995), and 1.743 (3) and 1.772 (3) \AA for ethyl 4-(2-oxobenzothiazolin-3yl)butanoate (Baysen et al., 2002).

There is a short intermolecular $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 1^{1}$ contact between the α atom of the methyl propionate substituent and the carbonyl oxygen of the oxobenzothiazole group [C9. $\mathrm{O} 1^{1}$ 3.241 (2) $\AA, \mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{i}} 2.47 \AA$; symmetry code (i): $-x, \frac{1}{2}+y$, $\left.\frac{1}{2}-z\right]$. These contacts link the molecules into infinite chains along the b axis of the crystal.

Experimental

$10.0 \mathrm{mmol}(1.51 \mathrm{~g})$ of $2(3 H)$-benzothiazolone and $11.0 \mathrm{mmol}(1.11 \mathrm{~g}$, 1.53 ml) of triethylamine were dissolved in 30 ml of methanol. $11.0 \mathrm{mmol}(0.95 \mathrm{~g}, 0.99 \mathrm{ml})$ of methyl acrylate was added to the solution. The mixture was heated at $323-333 \mathrm{~K}$ for 6 h . It was then
cooled to room temperature and 100 g ice-water was added and stirred for 1 h . The precipitate was collected by filtration, dried and washed with $10 \% \mathrm{NaOH}$ solution, followed by water until neutral, then dried again and crystallized from methanol; yield $1.66 \mathrm{~g}(70 \%)$.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=237.27$
Monoclinic, $P 2_{1} / c$
$a=7.9109$ (13) A
$b=8.386$ (3) A
$c=16.4898(16) \AA$
$\beta=93.645$ (12) ${ }^{\circ}$ 。
$V=1091.8$ (4) \AA^{3}
$Z=4$
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 3603 reflections
$\theta=20.1-26.4^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.90 \times 0.60 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.812, T_{\text {max }}=0.930$
3383 measured reflections
3176 independent reflections
2039 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.126$
$S=1.03$
3176 reflections
146 parameters
H -atom parameters constrained
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=30.0^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 11$
$l=-23 \rightarrow 23$
3 standard reflections every 150 reflections intensity decay: 0.6%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0588 P)^{2}\right. \\
& +0.2099 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.25 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.085 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C1	$1.742(2)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.217(2)$
$\mathrm{S} 1-\mathrm{C} 7$	$1.768(2)$	$\mathrm{O} 2-\mathrm{C} 10$	$1.200(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.402(2)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.330(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.371(2)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.443(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.465(2)$		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7$	$91.50(8)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$112.5(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$114.9(2)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$125.7(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$118.8(2)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{S} 1$	$124.4(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 8$	$126.2(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$109.9(2)$
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 11$	$117.5(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$112.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.58(16)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	$123.7(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$127.30(14)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$125.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$111.12(13)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	$111.1(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$127.3(2)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.47	$3.241(2)$	136
Symmetry code: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$				

Symmetry code: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for

Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors thank the University of Kırıkkale, Turkey for the data collection.

References

Baysen, F., Yabasan, R., Ide, S., Şahin, E., Çakır, B. \& Dündar, Y. (2002). Z. Kristallogr. New Cryst. Struct. 217, 529-530.
Clayden, J., Greeves, N., Warren, S. \& Wothers, P. (2001). Organic Chemistry, pp. 164-165. Oxford University Press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Khan, M. A., Taylor, R. W., Lehn, J. M. \& Dietrich, B. (1988). Acta Cryst. C44, 1928-1931.
Lamiot, J., Baert, F., Taverne, T., Houssin, R. \& Lesieur, I. (1995). Acta Cryst. C51, 1912-1915.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows (Version 1.03) and Single Crystal Structure Analysis Software (Version 1.03). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rudd, S. \& Barany, G. (1984). Acta Cryst. C40, 2118-2120.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Varkonda, S., Hýblová, O., Sutoris, V., Konecný, V. \& Mikulásek, S. (1985).
Czechoslovakian Patent No. 239.411.

